Gopakumar-Vafa hierarchies in winding inflation and uplifts

نویسندگان

چکیده

A bstract We propose a combined mechanism to realize both winding inflation and de Sitter uplifts. the necessary structure of competing terms in scalar potential not via tuning vacuum expectation values complex moduli, but by hierarchy Gopakumar-Vafa invariants underlying Calabi-Yau threefold. To show that threefolds with prescribed actually exist, we explicitly create database all genus 0 up total degree 10 for complete intersection Calabi-Yau’s Picard number 9. As side product, also identify redundancies present CICY list, 13. Both databases can be accessed at this link ( https://www.desy.de/ ? westphal/GV_CICY_webpage/GVInvariants.html ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Gopakumar-vafa Invariants

We show that Gopakumar-Vafa (GV) invariants can be expressed in terms of the cohomology ring of moduli space of D-branes without reference to the (sl2)L ⊕ (sl2)R action.

متن کامل

Pole Structure and Gopakumar–vafa Conjecture

We show that the free energy of the topological string admits a certain pole structure by using the operator formalism. Combined with the results of Peng that proved the integrality, this gives a combinatoric proof of the Gopakumar–Vafa conjecture.

متن کامل

The Gopakumar-vafa Formula for Symplectic Manifolds

The Gopakumar-Vafa conjecture predicts that the Gromov-Witten invariants of a CalabiYau 3-fold can be canonically expressed in terms of integer invariants called BPS numbers. Using the methods of symplectic Gromov-Witten theory, we prove that the Gopakumar-Vafa conjecture holds for any symplectic Calabi-Yau 6-manifold, and hence for Calabi-Yau 3-folds. The results extend to all symplectic 6-man...

متن کامل

Lagrangians for the Gopakumar–Vafa conjecture

This article explains how to construct immersed Lagrangian submanifolds in C2 that are asymptotic at large distance from the origin to a given braid in the 3–sphere. The self-intersections of the Lagrangians are related to the crossings of the braid. These Lagrangians are then used to construct immersed Lagrangians in the vector bundle O(−1)⊕ O(−1) over the Riemann sphere which are asymptotic a...

متن کامل

Topological Strings, Instantons and Asymptotic Forms of Gopakumar–Vafa Invariants

We calculate the topological string amplitudes of Calabi–Yau toric threefolds corresponding to 4D, N = 2 SU(2) gauge theory with Nf = 0, 1, 2, 3, 4 fundamental hypermultiplets by using the method of the geometric transition and show that they reproduce Nekrasov’s formulas for instanton counting. We also determine the asymptotic forms of the Gopakumar–Vafa invariants of the Calabi–Yau threefolds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep05(2021)271